120 research outputs found

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Impact of in utero exposure to EtOH on corpus callosum development and paw preference in rats: protective effects of silymarin

    Get PDF
    BACKGROUND: Using a rat model we have found that the bioflavonoid silymarin (SY) ameliorates some of the negative consequences of in utero exposure to ethanol (EtOH). In the current study our aim was to determine if laterality preference and corpus callosum development were altered in rat offspring whose mothers were provided with a concomitant administration of SY with EtOH throughout gestation. METHODS: We provided pregnant Fisher/344 rats with liquid diets containing 35% ethanol derived calories (EDC) throughout the gestational period. A silymarin/phospholipid compound containing 29.8% silybin was co administered with EtOH to a separate experimental group. We tested the offspring for laterality preference at age 12 weeks. After testing the rats were sacrificed and their brains perfused for later corpus callosum extraction. RESULTS: We observed incomplete development of the splenium in the EtOH-only offspring. Callosal development was complete in all other treatment groups. Rats from the EtOH-only group displayed a left paw preference; whereas control rats were evenly divided between right and left paw preference. Inexplicably both SY groups were largely right paw preferring. CONCLUSIONS: The addition of SY to the EtOH liquid diet did confer some ameliorative effects upon the developing fetal rat brain

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    The model marine diatom Thalassiosira pseudonana likely descended from a freshwater ancestor in the genus Cyclotella

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Publication of the first diatom genome, that of <it>Thalassiosira pseudonana</it>, established it as a model species for experimental and genomic studies of diatoms. Virtually every ensuing study has treated <it>T. pseudonana </it>as a marine diatom, with genomic and experimental data valued for their insights into the ecology and evolution of diatoms in the world's oceans.</p> <p>Results</p> <p>The natural distribution of <it>T. pseudonana </it>spans both marine and fresh waters, and phylogenetic analyses of morphological and molecular datasets show that, 1) <it>T. pseudonana </it>marks an early divergence in a major freshwater radiation by diatoms, and 2) as a species, <it>T. pseudonana </it>is likely ancestrally freshwater. Marine strains therefore represent recent recolonizations of higher salinity habitats. In addition, the combination of a relatively nondescript form and a convoluted taxonomic history has introduced some confusion about the identity of <it>T. pseudonana </it>and, by extension, its phylogeny and ecology. We resolve these issues and use phylogenetic criteria to show that <it>T. pseudonana </it>is more appropriately classified by its original name, <it>Cyclotella nana</it>. <it>Cyclotella </it>contains a mix of marine and freshwater species and so more accurately conveys the complexities of the phylogenetic and natural histories of <it>T. pseudonana.</it></p> <p>Conclusions</p> <p>The multitude of physical barriers that likely must be overcome for diatoms to successfully colonize freshwaters suggests that the physiological traits of <it>T. pseudonana</it>, and the genes underlying those traits, might differ from those of strictly marine diatoms. The freshwater ancestry of <it>T. pseudonana </it>might therefore confound generalizations about the physiological and metabolic properties of marine diatoms. The freshwater component of <it>T. pseudonana</it>'s history merits careful consideration in the interpretation of experimental data collected for this important model species.</p

    A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor

    Get PDF
    Parasites of the phylum Apicomplexa cause diseases that impact global health and economy. These unicellular eukaryotes possess a relict plastid, the apicoplast, which is an essential organelle and a validated drug target. However, much of its biology remains poorly understood, in particular its elaborate compartmentalization: four membranes defining four different spaces. Only a small number of organellar proteins have been identified in particular few proteins are known for non-luminal apicoplast compartments. We hypothesized that enlarging the catalogue of apicoplast proteins will contribute toward identifying new organellar functions and expand the realm of targets beyond a limited set of characterized pathways. We developed a bioinformatic screen based on mRNA abundance over the cell cycle and on phyletic distribution. We experimentally assessed 57 genes, and of 30 successful epitope tagged candidates eleven novel apicoplast proteins were identified. Of those, seven appear to target to the lumen of the organelle, and four localize to peripheral compartments. To address their function we then developed a robust system for the construction of conditional mutants via a promoter replacement strategy. We confirm the feasibility of this system by establishing conditional mutants for two selected genes – a luminal and a peripheral apicoplast protein. The latter is particularly intriguing as it encodes a hypothetical protein that is conserved in and unique to Apicomplexan parasites and other related organisms that maintain a red algal endosymbiont. Our studies suggest that this peripheral plastid protein, PPP1, is likely localized to the periplastid compartment. Conditional disruption of PPP1 demonstrated that it is essential for parasite survival. Phenotypic analysis of this mutant is consistent with a role of the PPP1 protein in apicoplast biogenesis, specifically in import of nuclear-encoded proteins into the organelle

    Differing Burden and Epidemiology of Non-Typhi Salmonella Bacteremia in Rural and Urban Kenya, 2006–2009

    Get PDF
    BACKGROUND: The epidemiology of non-Typhi Salmonella (NTS) bacteremia in Africa will likely evolve as potential co-factors, such as HIV, malaria, and urbanization, also change. METHODS: As part of population-based surveillance among 55,000 persons in malaria-endemic, rural and malaria-nonendemic, urban Kenya from 2006-2009, blood cultures were obtained from patients presenting to referral clinics with fever ≥38.0°C or severe acute respiratory infection. Incidence rates were adjusted based on persons with compatible illnesses, but whose blood was not cultured. RESULTS: NTS accounted for 60/155 (39%) of blood culture isolates in the rural and 7/230 (3%) in the urban sites. The adjusted incidence in the rural site was 568/100,000 person-years, and the urban site was 51/100,000 person-years. In both sites, the incidence was highest in children <5 years old. The NTS-to-typhoid bacteremia ratio in the rural site was 4.6 and in the urban site was 0.05. S. Typhimurium represented >85% of blood NTS isolates in both sites, but only 21% (urban) and 64% (rural) of stool NTS isolates. Overall, 76% of S. Typhimurium blood isolates were multi-drug resistant, most of which had an identical profile in Pulse Field Gel Electrophoresis. In the rural site, the incidence of NTS bacteremia increased during the study period, concomitant with rising malaria prevalence (monthly correlation of malaria positive blood smears and NTS bacteremia cases, Spearman's correlation, p = 0.018 for children, p = 0.16 adults). In the rural site, 80% of adults with NTS bacteremia were HIV-infected. Six of 7 deaths within 90 days of NTS bacteremia had HIV/AIDS as the primary cause of death assigned on verbal autopsy. CONCLUSIONS: NTS caused the majority of bacteremias in rural Kenya, but typhoid predominated in urban Kenya, which most likely reflects differences in malaria endemicity. Control measures for malaria, as well as HIV, will likely decrease the burden of NTS bacteremia in Africa
    • …
    corecore